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converges. The quantity 7 (a3) becomes zero according to (3.12). From this we obtain 
that 1: + I^X grows without bounds for a -+ a3. 

From (2.8) and (2.11) it follows that oi39 eig* , Us also grow without bounds for 
a -+ a3. 

Thus, if one considers only the bounded solutions in the packet of reflected waves, 
then a reflected plastic shock wave does not exist. 
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An integral equation of the first kind with a difference kernel having a logarithmic sin- 
gularity is studied between finite limits. Many plane and three-dimensional mixed prob- 
lems of elasticity theory and mathematical physics reduce to such integral equations. 

A method is proposed for the effective solution of this equation for small values ofthe 

characteristic dimensionless parameter h in the kernel. The principal part of the solu- 
tion is extracted for small h and the residual is sought in the form of some series of 

Laguerre polynomials. A certain infinite algebraic system is obtained to determine the 
coefficients of this series. An approximate solution of the integral equation with isolated 
characteristic singularities is found by truncating this system. 

As illustrations, problems on the effect of a strip stamp on an elastic half-space and 
the impression of a stamp into an elastic strip are considered. 

Certain papers of Popov [l-3] were the impetus to the development of this method. 
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1, Let us consider the integral equation 

-1 

Here h E (0, m) is a dimensionless parameter. 

The kernel of the equation is representable by the Fourier integral 

M (y) = r ‘+ cos uyd u 

(1-l) 

(1.2) 

Let us assume the following as regards the function L (u) . 
1) L (u) / u is an even, real, continuous function, and strictly positive for all 

u E (-00, (XI) 

2) L(U) = 1 + fi + --!$+O(luj-s) for ]u]-+Dc (1.3) 

3) L(u)-AU for u-+0 (a4=COIk3t>0) 

Certain plane contact problems for a strip, wedge, a number of contact problems for 
cylindrical bodies, problems on the impression of a strip or annular stamp in an elastic 

half-space, etc., reduce to the integral equations of the type (l.l)-(1.3). 

There holds [4-61 relative to the integral equation (l.l)-(1.3). 

Theorem 1.1. Let the function f (5) be such that f’ (~1 satisfies the Hiilder 

condition for 1 z 1 < 1 with exponent a,where 0 < a ( 1. Then (l.l)-(1.3) is 

uniquely solvable in L, (-1, l), 1 < JI < 2 for all h t= (0, CQ) and its solu- 

tion is (I (Q =m- (1 - g2)-‘/z Q (E) (1.4) 

where the function Q (t) is at least continuous for 1 6 1 < 1. 
Furthermore, taking account of the known theorem of Krein n], let us limit ourselves 

to the analysis of the case f (x) z f. 

Theorem 1.2. If for some h e (0, w) .the function o(p) E LP(O,x), 
1 < p < 2 is a solution of the integral equation 

then the solution of the integral equation (1.1) for f (x) f f in the class L, (-1, 1) 
is found by means of the formula 

9(~)-wil_~~~-~!1---j;~, jX]<i (1.6) 

Conversely, if Q (x) E? L, (--I, ‘I), 1 < p < 2 is a solution of (1.1) for 
f (2) = f and some h E (0, oo), then the function o (6) defined in conformity with 
(1; 6), is a solution of (1.5) in L, (0, co). 

Proof. Let us consger the system of three integral equations [8]: 

1 v (c;) M (+, dt = nf (- =<x<m) (1.7) 



Solving nonclassical mixed problems of the theory of elasticity 55 

By adding (1.7) it is easy to see that if the solution of this system is known, the solution 
of (1.1) has the form 

GJ(z)=w ~~)+‘“(+)+u(“)’ lzldl (1.8) 

There still remains to take into account that the first equation in (1.7) has the solution 

i,’ (s) = f (&)-I (1.9) 

and the second and third equations in (1.7) reduce to (1.5) by obvious changes of vari- 
ables. The converse assertion of the theorem follows at once from the uniqueness of the 

solution of (1.1). 

Corollar 1.1. 
& E (0, = 1 7 

Equation (1.5) is uniquely solvable in L, (0, a) for all 

2, In constructing effective solutions of the integral equation (1. l), the idea of utiliz- 
ing the smallness or largeness of the parameter h naturally arises. This results in the idea 

of utilizing asymptotic methods [8] to investigate (1.1). 
For ladge h the asymptotic methods are based on the extraction and exact inversion 

of the integral operator corresponding to the logarithmic part [6] of the kernel M (y). 

Namely,(l. 1) is written as 

where the function F (y) is the regular part of the kernel for all h > 0 ; it can be shown 

[6 J that under the conditions (1.3) it is at least continuous on the segment 191 < 2 i h . 
F~thermore~ the integral equation (1.5) is solved either by successive approximations 
according to the scheme 

or is reduced to an infinite algebraic system. To do this the solution q (E) is represented 
as 

(4.3) 

and the fact is utilized that the Chebyshev polynomials T, (E) are eigenfunctions of the 
operator 

(4.4) 

Asymptotic methods for small h are based on the utilization of the equivalent equa- 
tion (1.5) in place of (1.1) and the exact inversion of the Wiener-Hopf operator on the 
left. The specific solution of (1.5) can be obtained by successive approximations by 
means of the scheme 

y @i (3) dl(3 - b) dj3 = y [w;_~ @f + --..&I M (8 + b - +) rip, O,<b<o. (2.5) 
b 

or by reducing the integral equation (1.5) to an infinite algebraic system [S, 8, 91. The 
method of reduction to an infinite system, developed in [5, 91, does not directly afford 
the possibility of obtaining a solution with the characteristic singularity (1 - z~)-“~ 
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extracted at once (see (1.4)). A new method of reducing (1.5) to an infinite system 
will be given below which is based on knowing the eigenfunctions of some Wiener-fiopf 
integral operator, and permits obtaining the solution at once in the form (1.4). 

We shall later need some results from papers [ 1, 31 where the validity of the follow- 
ing relationships is shown: 

(2. (i) 

Here K, (z) is the Macdonald function, L& (s) are Laguerre polynomials, K,,% (x) 
Chebyshev polynomials of the second kind 

t, (z) = - In J t.h (z/4)1, y, = vw(Zm,)!! [(Zm - i)!!]-1 (Z.@ 

8, Let us represent the integral equation (I. 5) as 
03 

c ‘p (2) K* (r - t) dz = - y cp (z) N (T - I) dT -j- 
. 
0 ;I 

+ f [lp (T + d -t- + fs] K (z -+- f) dz ioa<4 

(3.1) 

Here we use the notation 

P b 2 
-..-=z 
‘4 

_:_ f, 
’ -4 Ih = s, M (y> = K !+j , (9 (AT) = ‘p (t) 

K (2;) = K*(z) + N(z) = y+ coswzdw (3.2) 
h 

and K ,, (z) or ko (2) can be taken equally successfully as K, (z). The essence of the 

method proposed below will not thereby be altered. Furthermore, for definiteness, let us 
assume K, (2) = Ko (2). 

Let us seek the solution of { 3.1) in the form 

‘p (7) = rpo (r> + IPr 6) (3.3) 

where rpo (‘C) and ‘pl (‘6) are determined, respectively, from the integral equations 

(3.4) 

The solution of (3.4) can be obtained by the Wiener-Hopf method [lo] and is 

cpo 0) 0.5 fs [(I) (j&) + (nl)-‘+ - 21 (X6) 
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Here @ (2) is the probability integral. 
Let us expand ‘p. (t) in a series of Laguerre polynomials 

‘PO (t) = -+ fs -$- j. A,L;l* (21) 
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(3.7) 

where the coefficients A ,,are representable as 

A,=&[(-4)‘“JB-&J, a,= T/2inGV(-% 1; l/s; 2) (3.8) 

Here F (a, fi; y; 6) is the hypergeometric function, and the constants a,,, can also 
be found from the following recursion relations : 

a, + a,,, = - (am - 1) !! [(2m + 2)!!l_l (m = 0, 1, . *; a0 = 1) 

Now let us expand the functions hr (7 - t), N (‘c -f- t), K. (t + t) in series of 

Laguerre polynomials. We obtain 

N (Z * t) = jj r,b& (z) ecfL-,l” (2t) (3.9) 
m=o 

K. (Z + t) = n i d,(t) e-‘Lz” (2t) 
ml0 

(3.10) 

b; (z) = r hi (z _t t) $ L;” (2t) dr (3.11) 
. 
0 

The functions d, (t) (m = 0, 1, . . .) have the form [l] 

(3.12) 

Evaluating the integral [ 111 in (3.12). we obtain 

d, (z) = f2pc(2m - 1)!! D_cJm_1(2 1/q (n =o, 1,. . .) (3.13) 

Here D, (x) are parabolic cylinder functions. For n a negative integer, n,, (x) are 
expressed [ll] in terms of the function E rfc (z / r/ 2). It can be shown that d,, (t) 
should satisfy the relationship 

al 

s d,(qcEr=(-1)“1/‘2--a, (m=O,i,...) (3.14) 
0 

Let us seek the function (pl (t) in a form analogous to (3.7) 

B,L;” (at) (3.15) 

Inserting (3.7). (3.9), (3.10) and (3.15) into (3.5) and utilizing (2.6). we obtain the 
following infinite system to determine theB,: 

B,=-CC,+ 2 (A n + 11~) (-‘~,m + H,, + Mm,) (m = o, 1, . . .) (3.16) 
n=o 

Here we have introduced the notation 
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Utilizing the integral 7,414f 8) in [II J and the known relationships 
co 03 

c 
CO8 LLxdx -. x6 (I/.) ) c sin rtsdz ~- t_ (6 (~4.) -is delta function) 

b i 

the constants CVZ and R,,,, can be represented in the following form convenient for cal- 
culations : 

V’2(- l)“lym cn 
( :m m-7 -y_.- 

IT c 
:c (1’) I 

. 11 tf i_ $)% Sin -!2rn -j.;-j 11) j dih 
i 

(i 

Taking account of (3.131, the constants N,,,, can he evaluated by using integration 

by parts and 3.364( 3) in [ 111, Let us present the expressions defining these constants 

for some values of R and m 

The functions Xt,,,L (I() can be evaluated by using formulas 3,362(Z) in Ill]. For 
example 



Solving nonclassical mixed problems of the theory of elasticity 59 

2 
Xom (Lb) == (* + U2)l,r Rc (e-[@m+~)*+*~Lli Erfc ( l/s (1 -+ iu))j trn = o, I, . . .) (3.21) 

Let us now turn to the question of solving the system (3.16). As computations show, 
for h < 1 terms containing the unknown coefficients R,,in the right side of the system 

can be neglected with adequate accuracy for practical purposes. Afterwards, the sum in 

the right side can be represented as an integral on the basis of the relationships (3.6), 
(3.7). When i. & 2, terms containing ICI,,, in the right side can be neglected in solv- 
ing the system. After the solution of the system, the function q (z) is found by means of 
(1.6), (3.2). (3.3), (3.6), and (3.15). The following expression 

(3.22) 

P, = (2s + 1) CD (f/s) - s + 2 JQiie-s 

can be obtained for the integral characteristic of the solution 

. 

P= iq(x)dz 
-1 

4. As illustrations, let us consider the following contact problem of elasticity theory: 

(a) the problem of the impression of a smooth strip stamp in a half-space [l, 4, 8, 121, 
and (b) the problem of the impression of a stamp in a strip lying frictionless on a rigid 

foundation 1131. For the problems (a) and (b), respectively, the function L (u) is 

(a) (b) L(u) = s$,2u”,;U (4.1) 

Let us solve the system (3.16) by the truncation method. Keeping a finite number of 
terms in the series (3.16) and solving the system thus found, we obtain an approximate 

solution of the problem. As numerical computations show, in order to obtain a practically 
exact solution for h < L , it is sufficient to limit oneself to the solution of a system of 
two or three equations. 

For the problems (a) and (b) being considered, the solutions of the truncated systems 
for h = 2 comprised of one, two, and three equations, respectively, are 

(a) (I) B, = 0.0212, (2) B, = 0.00210, B, = 0.00212 
(3) B, = 0.00328, B, = 0.00171, B, = 0.00121 

(b) (I) B, = -0.0431 (2) B, = -0.0556; B, = 0.0800 
(3) B, = -0.0471, B, = 0.0828, B, = 0.00985 

From (3.22) we obtain an approximate expression to determine the force 

P=f(P,+2I/Zd,(JG) Bo+ [4 1/?e-“- JG@(~s)]BI+ 

+ [3/d l/G-,( I/S) - 4s 1/Be_“] B,} 

(4.2) 

Let us present the values of the quantities P, = f-lP, Q1 = f-IQ (i) and Qz =f-1 Q (0) 

(the first, second, and third approximations), calculated for h = 2 for the problems (a) 
and (b) by the formulas in the present paper and the formulas obtained by the method 

of large h [S]. 
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I’* 
(a) (b) 

Q1 Q2 
(a) @I (a) (b) 

(1) 2.00 2.84 0.585 0.737 0.685 1.069 
(2) 1.95 2.73 0.567 0.776 0.668 0.971 
(3) 1.95 2.75 0.569 0.795 0.66$ 0.970 
I81 1.96 2.75 0.580 0.795 0.669 0.964 

In conclusion, let us note that the mentioned method can be utilized successfully to 
investigate problems on the impression of a sufficiently broad ring stamp in an elastic 
half-space if it is taken into account that the eigenf~lctiolls of the Wiener-Hopf integral 
operator :r- 

_-l*Cp = _+ y Cp (t) dT \ 
I’ (ilr + I/&) F (lJp -- ll$u) 

t ;, r (3/g -t- l/$u)r (3/4 - 1f2iu) 
cosu(7:-qdu (4.3) 

are known 121. 
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